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Adhesion Dynamics on the Line: The Mass
Aggregation Process

Toufic Suidan1

Received April 25, 2000

This paper studies several problems in adhesion dynamics on the real line. We
consider an ensemble of particles with i.i.d. initial velocities. In the gravitational
case, we identify a shock time and describe several aspects of the mass aggrega-
tion process before, at and after this time. We also study the long time behavior
of the ballistic aggregation process.
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1. INTRODUCTION

The gravitationally interacting sticky particle model was originally
proposed by Zeldovich(1) in order to study the problem of large scale struc-
tures in the universe. The problem has been given attention in E et al.(2)

and Martin and Piasecki(3) [MP]; there is also a useful connection with
Burgers turbulence.(4) The formulation of the problem we consider
originated in [MP], and involves a simplified one-dimensional version of
Zeldovich's model; several properties of the ballistic model, for which
gravity is turned, are also discussed.

Consider a system of N point masses (particles) on the real line which
attract each other with forces proportional to the product of their respective
masses and independent of their inter-particle distance. The corresponding
N-body Hamiltonian has the form:

HN= :
N

i=1

p2
i

2mi
+# :

i< j

mi mj |xi&xj | (1)
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where # is the gravitational constant, and mi , xi , pi are the mass, position,
and momentum of particle i ; the potential is the standard one-dimensional
gravitational potential. This Hamiltonian governs the dynamics of the
particle system for time intervals separating binary collisions. In our case
collisions are perfectly inelastic, i.e., momentum is conserved but energy is
not. To be more descriptive, when two particles collide a larger particle of
mass equal to the sum of the masses of the initial colliding particles is
created; the momentum of this new particle is the sum of the momenta of
the initial colliding particles. The subsequent dynamics is governed by a
Hamiltonian of the above form with different mi , x i , and pi . The rules
which determine the dynamics have been completely specified.

The problem of interest, first studied in the paper by Martin and
Piasecki, can be described as follows. Let M be the total mass of the above
system of particles. At the initial moment of time, t=0, there are N identi-
cal particles each having mass m=M�N; the particles are equally spaced in
the interval [0, 1]/R and have separation distance a=1�N. We need the
following useful notation. Consider the cluster of size n beginning at par-
ticle j+1 (if j+n�N ). The center of mass of this cluster of particles
( j+1,..., j+n) at time t (before any collisions of particles in this cluster
with particles outside this cluster) is denoted X n

j+1(t) and is equal to

X n
j+1(t)=\ j+

n+1
2 + a+

t
n

:
n

s=1

vj+s+#m(N&n&2j )
t2

2
(2)

where vi is the initial velocity of particle i. Bonvin et al.(5) [BMPZ] noticed
that the necessary and sufficient conditions for the formation of an
aggregate of mass mn by time t from the cluster ( j+1,..., j+n) subject to
the constraint that all particles not in this cluster remain a finite distance
from this aggregate until at least time t are:

X r
j+1(t)>X n&r

j+r+1(t), r=1, 2,..., n&1

X s
j&s+1(t)<X n

j+1(t), s=1, 2,..., j

X n
j+1(t)<X s

j+n+1(t), s=1, 2,..., N&(n+ j )

The last condition is only meaningful if j<N&n. The first condition states
that for any partition of ( j+1,..., j+n) into a left and right piece, the
center of masses of these two pieces must cross by time t. The second and
third conditions merely state that the cluster ( j+1,..., j+n) does not have
interaction with particles that do not belong to it.
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Denote by 3(x) the Heaviside function which takes the value 1 for
x>0 and 0 otherwise. A straightforward substitution of (2) into the above
conditions allows us to rewrite these conditions as

`
n&1

r=1

3 \ :
r

l=1

vj+l&
r
n

:
n

l=1

vj+l+
m{r(n&r)

2 +=1 (3)

`
j&1

r=0

3 \ j&r
( j&r)+n

:
( j&r)+n

s=1

vr+s& :
j&r

s=1

vr+s&
mn( j&r) {

2 +=1 (4)

`
N&( j+n)

s=1

3 \ n
n+s

:
n+s

i=1

v j+i& :
n

i=1

vj+i&
mns{

2 +=1 (5)

where {=#t&(1�\t) and \=m�a.
Let v1 ,..., vN be real valued i.i.d. random variables which have densities

symmetric about 0; we will also assume that there exists a $>0 so that
these random variables have 4+$ moments. The questions we address are:
(i) what probabilistic statements can be made about the aggregation pro-
cess for the dynamics with gravity; (ii) what such statements can be made
about the dynamics when there is no gravity. [BMPZ] studied (i) for the
case of Gaussian initial velocity distribution. They discovered a critical
time t* and showed that there were no macroscopic mass aggregates before
t* and that there is a macroscopic mass after t*. The methods they use
involve explicit calculations with the Gaussian distribution and the Sparre�
Andersen theorem. [BMPZ] also conjecture that before the critical time
only masses of size - N form.

For (i), we identify the same critical time t*, before which there is a
massive aggregate with probability 0 and after which there is a massive
aggregate with probability 1; we refer to t* as the shock time and we note
that t* depends only on # and \ (in particular, t*=1�- #\ which coincides
with {=0). We also give an exact formula for the probability of having r
masses at t*; this leads to a very simple formula for the expected number
of masses at t*. The first of these statements is to be understood in the
continuum limit where N � � in such a way that M=mN and \=m�a
remain constant. Physically, it is important to note that t* is exactly the
time at which the system with every initial velocity set to 0 would collapse
to form one mass aggregate; the fact that this happens for large N illustrates
that the dynamics, although random, is truly dominated by gravitational
influences. To understand the limiting process more thoroughly, we find a
sequence of times {N for which the above probabilities can be controlled,
uniformly. We also find partial evidence for the [MP] conjecture mentioned
above. For (ii), we calculate the probability of having r masses given N initial
masses in the limit as t � �; it is observed that the ballistic case (#=0)
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has very different dynamical properties than the gravitational case. The
methods used in this paper are geometrically motivated and allow more
freedom in the choice of initial velocity distributions, thus displaying the
universality of the dynamics.

2. NO MACROSCOPIC MASSES IN CASE {<0<#

Fix #>0, =>0 and {<0. The probability that an aggregate of mass
greater than =M is created by time { tends to 0 in the continuum limit;
actually, the statement of the following theorem is stronger. Let $ be
defined as in the introduction, and pick any & # (1&$�2(6+$), 1]. Define
AN

$ ({) to be the set of initial velocities for which an aggregate of at least
mass =mN 1�(2&&) is created by time {; N refers to the initial number of
particles in the system. We prove

Theorem 1. P(AN
$ ({)) � 0 as N � �.

Before beginning the calculations we would like to note that nonsensi-
cal statements such as n�2 (where n is not necessarily even) will appear
often; this is to avoid pedantic notations for quantities such as ``greatest
integer less than;'' sometime these quantities are important, but in this
paper they play no role and will be suppressed. We first estimate a related
quantity which is denoted pn

N({) and set equal to

P \ `
n&1

r=1

3(X r
1(t)&X n&r

r+1(t))=1+
=P \ `

n&1

r=1

3 \ :
r

l=1

v l&
r
n

:
n

l=1

vl+
m{r(n&r)

2 +=1+
which is clearly bounded by

P \ :
n�2

l=1

vl&
1
2

:
n

l=1

vl+
m{n2

8
>0+

For n>(=N )1�(2&&) we further bound this quantity by

P \ :
n�2

l=1

v l&
1
2

:
n

l=1

vl+
=M{n&

8
>0+�2P \} :

n

l=1

vl }>\&
=M{
16 + n&+

�C \&
16

=M{+
4+$ 1

n (4+$)(&&1�2)

�D \&
16

=M{+
4+$ 1

N (4+$)(&&1�2)�(2&&)

896 Suidan



where C is a constant which depends only on the moments of the random
variables vi and D is a constant which absorbs some factor of =. The last
bound is a combination of Chebyshev's inequality, the Marcinkiewicz�
Zygmund inequality and a short argument; the statement of the
Marcinkiewicz�Zygmund inequality and the argument mentioned are given
in the appendix; these inequalities are used to show that

E } :
n

i=1

vi }
4+$

=O(n2+$�2) (6)

The probability of having an aggregate of exactly mass mn>
m(=N )1�(2&&) form by time { can easily be bounded by

:
N&n

j=1

pn
N({)=(N&n) pn

N({)

This reflects the fact that the n-cluster could begin at N&n particle posi-
tions. Sum over all n>(=N )1�(2&&):

:
n>(=N )1�(2&&)

(N&n) pn
N({)�N 2p (=N )1�(2&&)

N ({)

�
D(=)

N [(&&1�2)(4+$)�(2&&)]&2 \&
16

=M{+
4+$

This last expression tends to 0 as N � �. Thus, the probability of having
a mass aggregate which is a finite fraction of the total mass M at time {<0
tends to 0 as N � �; the statement also says something about the non-
existence of smaller mass aggregates. Note that we did not need the fact
that v1 ,..., vN have densities.

3. MASS AGGREGATION AT THE CRITICAL TIME {=0

Let N be the initial number of particles. Define V N
r to be the set of

initial velocities (v1 ,..., vN) # RN so that there are exactly r masses at time
{=0. Define W N

n to be the set of initial velocities (v1 ,..., vN) # RN which
have the property: at time {=0 there exists an aggregate of mass exactly
Mn�N. We prove

Theorem 2. P(V N
r )=(1�r! N !)(d N�dzN )(log 1�(1&z))r | z=0 .

Theorem 3. P(W N
n )=1�n for n>N�2.

Corollary 1. The expected number of masses at t* is �N
j=1 1� j.
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We first note that the case {=0 only has meaning when #>0. It will
turn out that the key to understanding the statistics of the aggregation
process lies in understanding statistical properties of the convex envelope
of the symmetric random walk process generated by the real valued i.i.d.
random variables v1 ,..., vN . To explain this connection we need to define
a few concepts. Let (v1 ,..., vN) # RN. Define co(v1 ,..., vN) to be the convex
hull of the curve in R2 generated by connecting the points (0, 0), (1, v1),
(2, v1+v2),..., (N, v1+ } } } +vN) with line segments; this is a well defined
subset of R2. We will refer to the lower boundary of co(v1 ,..., vN) (the sub-
set of the boundary which lies below co(v1 ,..., vN)) as the convex envelope
of co(v1 ,..., vN). The length of segments of the convex envelope of
co(v1 ,..., vN) will refer to the length of the segment when projected onto the
x-axis or the time length of the segment. It should be clear what is meant
by the phrase: Statistics of the convex envelope of the random walk process
generated by v1 ,..., vN .

We observe that for {=0 (3), (4), and (5) give an exact relation
between the velocities v1 ,..., vN and the convex envelope of co(v1 ,..., vN).
In particular, we can infer the following information: (i) the number
of segments in the convex envelope of co(v1 ,..., vN) is exactly the number of
aggregates at time {=0 given initial velocities v1 ,..., vN ; (ii) the masses of
the aggregates are simply the length of the segments multiplied by the mass
of the initial point masses, m; (iii) the ordering of these masses is just the
same as the ordering of the segment lengths.

This remarkable correspondence allows one to calculate statistical prop-
erties of the mass aggregation at time {=0 by calculating statistical proper-
ties of the convex envelope of the random walk process generated by the sym-
metric i.i.d. random variables v1 ,..., vN . The following statistical properties of
this object are studied in Suidan(6) [S]: (i) For N�2<n�N, the probability
of having a segment of length n in the convex envelope is 1�n, therefore,
if 1

2<s<t�1, the probability of finding an aggregate of mass M with
sM�M�tM is �sN�n�tN 1�n which tends to log t�s as N � � (a quantity
drastically different from the case {<0); (ii) given N initial point masses the
probability that at {=0 we have exactly r aggregates is

1
r!

:
n1+ } } } +nr=N

n1 ,..., nr>0

1
n1n2 } } } nr

(7)

Using the method of generating functions it is easy to show that this
expression is equal to

1
r! N !

d N

dzN \\log
1

1&z+
r

+} z=0

(8)
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Note that for the statements above we do not need the 4+$ moment
condition. Proofs of these statements can be found in [S] which has been
submitted to the Annals of Probability. This paper is also available at the
Los Alamos National Laboratory Archives at http:��www.arXiv.org.

4. FULL MASS AGGREGATE FOR {>0

Fix {, =>0, and ' # (1&$�2(4+$), 1]. Given N initial particles, define
LN

' to be the the set of initial velocities (v1 ,..., vN) # RN such that at time {
there is an aggregate of mass Mn�N for some n with the property =N '�
n�(1&=) N. In this section we prove

Theorem 4. P(LN
' ) � 0 as N � �.

The probability that there is an aggregate composed of exactly n of the
initial particles can be bounded by

:
N&n

j=0

P \ `
j&1

r=0

3(X n
j+1(t)&X j&r

r+1(t))=1+
_P \ `

n&1

r=1

3(X r
j+1(t)&X n&r

j+r+1(t))=1+
_P \ `

N&( j+n)

s=1

3(X s
j+n+1(t)&X n

j+1(t))=1+
� :

N&n

j=0

P \ `
j&1

r=0

3(X n
j+1(t)&X j&r

r+1(t))=1+
_P \ `

N&( j+n)

s=1

3(X s
j+n+1(t)&X n

j+1(t))=1+
�{ :

(N&n)�2

j=0

+ :
N&n

j=(N&n)�2=
_P \ `

j&1

r=0

3 \ j&r
( j&r)+n

:
( j&r)+n

s=1

vr+s& :
j&r

s=1

vr+s&
mn( j&r) {

2 +=1+
_P \ `

N&( j+n)

s=1

3 \ n
n+s

:
n+s

i=1

vj+i& :
n

i=1

vj+i&
mns{

2 +=1+
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Denote �1=� (N&n)�2
j=0 and �2=�N&n

j=(N&n)�2 in the above expressions. We
estimate these quantities as follows

:
1

�(N&n) P \3 \ 1
n+(N&n)�2

:
n+(N&n)�2

i=1

vi&
1
n

:
n

i=1

vi&
m{
2

N&n
2 +=1+

(9)

:
2

�(N&n) P \3 \ 1
n+(N&n)�2

:
n+(N&n)�2

s=1

vs&
2

N&n
:

(N&n)�2

s=1

vs&
mn{

2 +=1+
(10)

The bounds for (9) and (10) are similar so we will briefly discuss (9). We
bound the first probability in �1 by 1; we bound the second probability by
recognizing that N&( j+n)>(N&n)�2 for the range of j in �1 and that
v1 ,..., vN are i.i.d. random variables; this allows us to pick the strongest con-
straint common to all terms in �1 and dominate �1 by this constraint
probability multiplied by N&n. The bound in (10) is carried out analo-
gously only switching the probability bounded by 1. Summing over all n
with the property that =N '�n�(1&=) N, where ' # (1&$�2(4+$), 1], we
arrive at the bound

:
=N'�n�(1&=) N {:

1

+:
2
=�4N 2P \ 1

N
:
N

i=1

vi�
M{

4N 1&'+ (11)

By similar estimates to those of Section 2 and the fact that we have 4+$
moments the last expression tends to 0 as N � �. In light of the results of
Section 4, this states that for any fixed {>0 the probability of having an
aggregate of full mass tends to 1 in the continuum limit. It is important to
note that the remaining dust particles must be completely insignificant in
the continuum limit. Note that for this argument we do not need the
velocity distributions to have densities.

5. UNIFORM CONTROL OF THE LIMITING PROCESS:
A SEQUENCE OF TIMES

Fix =, !>0. We identify a sequence of positive {N tending to 0 such
that the probability of having an aggregate composed of n>(1&=) N of
the initial N particles is greater than 1&!; this is the probability of having
an aggregate of mass M>(1&=) M by time {N be greater than 1&!.

We consider the sequence {N=DN &(1�2)('&(1&$�[2(4+$])) when '
defined as in the previous section. For an appropriate choice of D the
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probability we consider will be bounded from below by 1&! uniformly in
N. To see this we need only replace { by {N in expression (11). We estimate
this new quantity using Chebyshev's inequality and the previously men-
tioned facts regarding moments of the random variables |�n

i=1 vi | as
n � �.

4N 2P \ 1
N

:
N

i=1

vi�
M{N

4N 1&'+�
4N 2RN 2+$�2

(DN ) (1�2)('+1)(4+$)

=
4R

D(1�2)(4+$)('+1)N (1�2)(4+$)('+1)&(4+$�2)

where �>R>lim sup E( |�n
i=1 vi |

4+$)�(n2+$�2). Thus, by making D large
enough we can bound this probability uniformly in N with as much control
as necessary; in particular, we can bound it by !�2 which shows us that our
choice of {N is satisfactory.

6. BALLISTIC AGGREGATION: #=0

In this section we consider the ballistic case for which #=0; this is the
case of no gravity. In this regime, {=&1�\t for t>0 and N denotes the
number of initial particles. Let 0 r

N be the set of initial velocities v1 ,..., vN

such that the final number of aggregates (after the aggregation process has
reached completion) is r. Conditions (3), (4), and (5) imply that:

P(0r
N)=

1
r!

:
n1+ } } } +nr=N

n1 ,..., nr>0

1
n1 } } } nr

We arrive at this formula by similar methods to those of Section 3; the
correspondence with the convex envelope is different only in the sense that
the convex envelope gives the long time behavior as opposed to the
behavior at time {=0. This illustrates that the dynamical properties of the
ballistic case are very different from the dynamical properties of the
gravitational case. As in Section 3, we remark that the expected number of
masses is �N

j=1 1� j ; as N � � the number of masses grows as log N.

7. CONCLUDING REMARKS

We have dealt with several questions concerning the sticky particle
model with random initial velocities. We showed that in the gravitational
case there is a nonrandom time t* such that after this time the probability
of having a mass aggregate of full mass tends to 1 in the continuum limit;
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before this time the probability of having an aggregate which has a finite
fraction of the total mass of the system tends to 0 in the continuum limit.
We referred to the special time t* as the shock time and have characterized
the aggregation process at this shock time. We also found a sequence of
times greater than but tending to t* such that control over the above
probabilities is uniform as the number of particles increases. This analysis
led to the conclusion that the gravitational case dynamics is dominated by
gravity and is essentially nonrandom.

We also dealt with the ballistic case for which #=0. We investigated
the long time behavior for a system of N particles with random initial
velocities and concluded that this behavior is very different from the
behavior in the gravitational case.

APPENDIX: MARCINKIEWICZ�ZYGMUND INEQUALITY AND
LARGE DEVIATIONS

In this Appendix we state an inequality due to Marcinkiewicz and
Zygmund whose proof uses the remarkable inequality of Khintchine and
can be found in Chow and Teicher.(7) We use this inequality to bound the
pth moment of the random variable |�n

i=1 vi | where v1 ,..., vn ,... are real
valued i.i.d. random variables with Evi=0 and finite p th moment; as usual,
Evi is just the expectation of vi .

Theorem 5 (Marcinkiewicz�Zygmund). If [Xn , n�1] are
independent random variables with EXn=0, then for every p�1 there exist
positive constants Ap , Bp depending only upon p for which

Ap "\ :
n

i=1

X 2
i +

1�2

"p
�" :

n

i=1

Xi"p
�Bp "\ :

n

i=1

X 2
i +

1�2

"p
(12)

The following corollary gives us the desired result.

Corollary 2. If [Xn , n�1] are i.i.d. random variables with EXi=0,
E |X1| p<�, p�2, and Sn=�n

i=1 Xi , then E |Sn | p=O(n p�2).

Proof of Corollary 2. If p>2, by Holder's inequality �n
i=1 X 2

i �
n( p&2)�p (�n

i=1 |X i |
p)2�p and the conclusion follows from the Marcinkiewicz�

Zygmund Inequality.
Using the last fact and the Chebyshev inequality, it is easy to see that

the inequalities of Section 2 and 4 are valid; these inequalities are the large
deviation type inequalities we refer to in the title of this Appendix.
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